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COMPETING DEMANDS ON OUR SOIL RESOURCES
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MOLECULAR ENVIRONMENTAL CHEMISTRY AND LAND MANAGEMENT

mechanistic understanding of problem
—
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scale used in decision-making

kilometer meter millimeter micrometer nanometer

Cr(Vl) hot spot molecular-binding
on sand grain mechanisms of copper

organic matter g
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OBJECTIVE

lllustrate limitations and opportunities for
applying synchrotron x-ray micro/nanoprobes

to soil materials.
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CHEMICAL REACTIVITY IN SOIL MICROSITES

« The Chemical Speciation Model
 The Reactive Microsite Model

 Measuring Soil Reactivity



The Ch

emical Speciation Model
\ 2 4 -




SOIL COMPLEXITY AND ANALYTICAL SPECIFICITY

(based on Kizewski et al., 2011 J. Environ. Qual. 40:751)

analytical uncertainty

specificity of speciation analysis

matrix complexity

soil/ natural bio- non- model systems minerals/
sediment organic molecules crystalline (e.g., mineral- crystalline
l matter solids adsorbed species) compounds

tenorite (CuO) ¢
organic matter . .
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ANALYTICAL SPECIFICITY
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(based on Hesterberg et al., 2011 J. Environ. Qual. 40:667)




Those are species found in different model
systems, but how many different chemical
species of an element are in a given soil?

PHOSPHORUS EXAMPLE



Balancing Phosphorus Nutrition and Water Quality

(from USDA-NRCS image bank)




APS Sector 2-ID-B X-ray Microscope




Silicon Map — Organic Soil Sample from North Carolina

50 um

(30 Nnm
spot size)




SILICON AND ALUMINUM MAPS




PHOSPHORUS AND ALUMINUM MAPS




PHOSPHORUS AND ALUMINUM MAPS




Diversity of P K-edge XANES spectra
within a 50 x 50 ym area of organic soil material
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Overall P Species Distribution (50 x 50 yum Sample Region)
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ten standards.
How mobile is phosphorus in this soil?

Fits to P XANES spectra in 50 x 50 ym? region included
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THE REACTIVE MICROSITE MODEL

Hypothesis: Need chemical speciation AND geochemical
microenvironment properties to predict mobility

conceptual model drawn by
Mr. Derek Elliot



CHEMICAL TRANSFORMATIONS WITHIN SOIL MICROSITES OF VARYING
COMPOSITION MIGHT INFER DOMINANT REACTION MECHANISMS

r{li)-
hydroxide

Fe(lll)
(hydr)oxide

Al (hydr)oxide

Ma(llLIV)
oxide

conceptual models drawn
(based on Hesterberg et al., 2011 J. Environ. Qual. 40:667) by Mr. Derek Elliot



MEASURING MICROSCALE SOIL REACTIVITY




EXAMPLE

OXIDATION OF NATURALLY OCCURRING CHROMIUM
IN A SERPENTINIC SOIL



MICROSCALE Cr SPECIATION IN SERPENTINIC SOIL MATERIAL

Chromium distribution in
serpentinic soil particles

-

Chromium(VI) not detected by micro-

e XANES analysis of selected spots
Cr(VI) peak
5993 eV
l Cr(lll) / Cr(VI) standards
100% Cr(VI)

50% Cr(VI)

10% Cr(V1)

0% Cr(V1)

Normalized XANES (stacked)

soil microsite
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Synchrotron x-ray energy (eV)

NSLS Beamline X27A (10 x 10 pym resolution)



GEOCHEMICAL MICROENVIRONMENT PROPERTIES OF SOIL MATERIAL

Co-localization of chromium and

manganese (known redox couples) Simple correlation

Cr (XRF counts)

NSLS Beamline X27A (10 x 10 pym resolution)



MICROSCALE CHEMICAL REACTIVITY

Cr(lll) oxidation to Cr(VI) by H,0, is not uniform.
Is it related to geochemical microenvironments?

N

cr(ll)

original soil — oxidized soil

NSLS Beamline X27A (10 x 10 pym resolution)



EXAMPLE

ARSENIC ACCUMULATION IN SOIL SAND GRAIN
COATINGS TREATED WITH ARSENIC(llI)
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Arsenic Distributions before and after treatment with As(lll)
as 0.1 mM Na,AsO,




Arsenic distribution is similar to Fe distribution

As (ttal) Fe

g e




X-ray fluorescence map (12 keV) of ROI-2 after sequential As(lll)
treatments 1 and 2 (450 x 350 um image; 10 x 10 um pixels)

After Treatment 1 After Treatment 2
(0.1 mM NaAsO, sol’n) (1 mM NaAsO, sol’n)

Count range =84 - 500



Arsenic in ROI-2 after two As(lll) treatments

P1EO_6As3_2Radlb_NAV_ROI2




Arsenic accumulation appears to be
diminished in areas of high Cr + high Fe




Color blended map with Cr (red), As (green), and Fe (blue)

Purplish: Fe +Cr Orangish: Cr + As (lower Fe) Bluish-green: Fe +As

P1EO_6As3_2Radlb_NAV_ROI2



Simple correlation plots of As vs. Cr or Fe in ROI-2
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Selected As K-edge micro-XANES spectra (after 15t As treatment)
indicated that As(lll) largely oxidized to As(V)
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XANES maps collected over larger area, but narrower
energy range after 2" As(lll) treatment
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Evidence for UV-visible light-induced oxidation of As(lll) to
As(V) (1 hour radiation treatment of wet sample)

As(lll) = Green + Blue As(V) = Red

BEFORE AFTER




NEED TO EXPAND AND OPTIMIZE CHARACTERIZATION PARAMETERS

microsite composition (4-XRF)
speciation (XANES mapping)

mineralogy (4-XRD) As(lll) treatment

selected energies vs.
full XANES mapping

microenvironment
detail
C
G




ADVANTAGES OF THE XRS FOR MICROREACTIVITY
RESEARCH - IN PRIORITY ORDER

1. VARIABLE SPATIAL RESOLUTION
SURVEY (high flux) and DETAIL (high resolution)
- Can we get stronger element correlations with greater resolution?

2. WIDE ENERGY RANGE (in conjunction with XFN)
As ---> Fe, Mn, S, C (+Al and other trace elements)
Cr ---> Mn, Fe, S, C (+ Fe, Al and other trace elements)

3. HIGH FLUX
Need faster XANES mapping of low-concentration elements

4. X-RAY MICRODIFFRACTION CAPABILITIES
What structures contain the elements that affect transformations?

5. X-RAY TOMOGRAPHY
Can thickness of grain coatings on particles be measured?



NC STATE University

ACKNOWLEDGMENTS

CSREES _
ooy, MY
:

Ms. Kimberly Hutchison (NC State — Soil Sci.)
Dr. Martine Duff (Savannah River Site)

Dr. Joe B. Dixon (Texas A&M)

Dr. Michael J. Vepraskas (NC State — Soil Sci.)
Beamline X-27A at the National Synchrotron
Light Source and 2-IDB at the Advanced
Photon Source,supported by DOE’ s Divisions

of Materials Science and Chemical Sciences



